

INDUSTRY PERSPECTIVE ON MARKET CONSIDERATIONS FOR SMART TECHNOLOGY

Lisa Ferrara, Ph.D.

OrthoKinetic Technologies, LLC

&

OrthoKinetic Testing Technologies, LLC

DISCLOSURES

- OKT Strategic Planning & Regulatory Consulting
- OKT² ISO 17025 A2LA Accredited Independent Test Facility

OVERVIEW

- Industry Concerns & Market Outlook
- Evaluating Smart Orthopedic Technologies
- Identifying & Addressing Risks
- Challenges & Pitfalls

DEFINITIONS

- INNOVATION:
 - The process of translating an idea or invention into a good or service that <u>creates value</u> for improving quality of life and for which consumers will adopt.
- SMART TECHNOLOGY: 'Self Monitoring Analysis Reporting Technology'
 - Technologies capable to adapt automatically & modify behavior to fit environment, able to sense from stimuli, environment and provide data to analyze.

SMART INNOVATION – DETERMINING VALUE

- 1. Does it offer a solution to a problem that currently does not exist?
- 2. Is it superior to other conventional products that do not provide solutions, nor address root cause?
- 3. Is it truly "NOVEL" or just an incremental change
- 4. Is it a technology looking for an application?

SMART ORTHOPEDIC SYSTEMS

Smart Tools

- RFID tags on surgical instruments
- Smart scalpels, Microneedles drug delivery

2. Smart Implants

- Intraop
 – VeraSense TKA alignment
- Long-term implantation

3. Smart Diagnostics

- Wearables monitor
- Lab on a chip

4. Smart Treatments

Drug delivery systems

5. Smart Biomaterials

Polymers – respond differently to different strain rates

6. Smart Designs

- Structures that can be control pressures, flow, stress
- Nanosieves

SMART SYSTEM

MARKET OUTLOOK

- Sedentary lifestyles, poor nutrition = prevalence of chronic diseases will continue to increase = overburdened healthcare system
- Innovative leaps in medical technology will be <u>crucial</u>
- Current market developments will lead to patient specific treatments using smart devices & machines.
- Logical for long-term economics --- BUT Acceptance & adoption of new technologies necessary

INDUSTRY CONCERNS

- Must be a disruptive & superior technology for max VALUE
- Must offer superior solution to patient quality of life to increase adoption
- Must be SAFE & EFFECTIVE- and work well!
- Challenging & Costly Regulatory processes
- Reimbursement Challenges post-approvals
- Pricing concerns to recoup development costs & still remain 'competitive'
- Hospital adoption
- Costs & Time to market
- Greater user acceptance & adoption = Greater profit to Industry

How do we evaluate Smart Orthopedic Systems?

SEQUENTIAL PROCESS

TESTING & EVALUATING SMART SYSTEMS

- 1. <u>"System"</u> Implant +Tooling +Diagnostic + Therapeutic
- 2. Lack of current test standards & guidelines for these systems
- 3. Lack of equipment & resources to evaluate new technologies & failures
 - MEMS & Nanosensors/ Nanoparticulate /Micro & Nanoscaffolds
- 4. Smart implants w/same indications may differ significantly in what makes them operate in a 'smart' manner
- 5. Although implant may be a 510k item, the addition of smart technologies to the implant & tooling increase the risk, challenges, tests, failure mechanisms, validation processes, and regulatory pathway
- 6. New Technologies = New Challenges = New Failures & Risks = New Regulations
- 7. "Think out of the Box"

UTILIZE HISTORICAL TECHNOLOGICAL CHARACTERISTICS

- Utilize test standards from other areas (textiles, electronics, computer assisted surgical systems, software...) as guidelines towards test methods for certain aspects of Smart System.
- Explore history of approved implants with 1 or more similar technical characteristics
- Incorporate test methods from other approved devices with similar technical characteristics
- May need to rely on different characteristics from multiple approved implants – combined can be used to <u>"complete</u> the story" compare for the new technology

EXAMPLE: SMART TOTAL HIP

SAFETY EVALUATION

- Provide comprehensive tests for full safety profile
- Some tests standards may apply
- Develop applicable & new test protocols
- Address risks
- Test & validate electronics, software, housing
- Assess System as a 'whole'
- "Complete the story"

ADDRESS RISKS

RISK vs. CLINICAL NEED

- Balance between Safety Risk vs. Clinical Need
- Greater safety risk Greater challenges, rigorous regulatory path & testing
- If clinical need is great value is high can the technology be fast-tracked?

RISK ASSESSMENT

Continual Process throughout Product Lifecycle

POTENTIAL RISKS OF SMART SYSTEMS

- Nanodebris, abrasion, electric charge, corrosion, residuals
- Physicochemical rxn
- Dosage & long-term effects in tissue
- Implant environment
- Interactions at bone interface, toxicity
- Strength of micro or nanostructures, flaking, delamination
- Open structures tissue ingrowth, integration
- Effects on cell differentiation good & bad
- New risks
- New failure modes
- New challenges
- New regulations

KNOW THE PITFALLS

- Unrealistic goals & timelines
- Inadequate / unrealistic funding No Shortcuts!
- Inexperienced team
- Inadequate test strategies, protocols, models
- Improper animal models = irrelevant outcomes
- Failure to conduct clinically relevant tests
- Lack of identifying, understanding failure modes
- Lack of comprehensive test plan that address many facets of smart system

PATHWAY TO SUCCESS

CREATE SPECIALIZED TEAM OF EXPERTS

 Team approach with seasoned experts & core competencies

 May need to form multiple teams for different smart orthopedic technologies

EVOLUTION OF TECHNOLOGY & MEDICINE

- Continue to innovate
- Improve outcomes, quality of life, longevity
- Continue to progress (can be good & bad)
- Our Job minimize the "bad"

THANK YOU

CONTACT INFORMATION:

Lisa Ferrara, Ph.D.

<u>lisa@orthokintech.com</u>

Voice: 910.253.9883

www.orthokintech.com

